segunda-feira, 11 de dezembro de 2023

Site IA Biologia USP

 https://sites.google.com/usp.br/ia-biologia-usp

Linhas de Pesquisa com a China - USA e Europa - Draft

 

1 - Data Science and Artificial Intelligence (AI) - Data Analytics, Crunching, Minig and Analysis. ActioBig - Wide Data -. AI: Deductive - Inductive (Supervised, Non-Supervised, Semi-Supervised and Reinforcement) - Narrow - General - Diagnostic, Predictive – Prescriptive, Generative, Creative and Superintelligence - Cross Validation - Split Generalization Index - Accuracy, Type I Error and II, Specificity, Sensitivity, Recall etc. Statistics: Outliers Impacts - Machine Learning Check - Small Data - Computational Simulation Bootstrapping - Jackknife and Monte Carlo. Observational and Experimental. Endorsing or ratifying AI. Weka, SAS and R programs.

 

2 - Robotics with AI and Metaverse - Bots Cbots and Cobots - Fourth and Fifth Industrial Revolution - Deep Learning – UiPath, Blue Prism and Automation Anywhere. Metaverse – Virtual and Augmented Reality – Holograms -Avatars – Dimension Reduction - Disruption: Kakushin and Kaikaku - Perpetual and Persistent Multi-User Environment - Digital Twins. 3D modeling software, animation software and game design software. virtual reality (VR) frameworks, augmented reality (AR) frameworks, and blockchain frameworks. VR headsets, AR glasses and motion tracking devices. Programming in Python language.

 

3 - Global Management Systems and International Quality Certification

Management and Research 4.0 and 5.0 - International Quality Certification (CIQ) - ISO standards (9,001 – 14,001 – 22,000 – 17,025 – 17,034 etc.), FSC and GlobalGAP. Intelligent Management (Smart Farms - Netherlands and Belgium) Ecological and Multifunctional Farm Management. China Agricultural University and Wageninguen. Toyota 4.0, Porsche, Lean Startup (Amazon – Uber), Lean Canvas, Lean Six Sigma, BSC (Apple- Volkswagen – Ford – Citibank - Petrobras – Sabesp) and OKR (Microsoft – Intel), RCA (NASA). Leadership X and Y by Douglas Mc Gregor. Pyramid of Human Needs at Work - Maslow, Self-Actualization and the Toyota Management System. Innovative, Transformational, Digital, Transactional, Situational and Ethical Leadership. Quality of Life at Work - Self-fulfillment - Well-Being - Happiness - Shine Project Harvard and World Bank (we coordinate through USP) - USP Quality of Life Center. Intelligent Management (Smart Farms - Netherlands and Belgium) Ecological and Multifunctional Farm Management. China Agricultural University and Wageninguen.

 

4 - Innovation Management: Disruptive Innovation, Hyperinnovation Hypercompetitiveness – Blue Ocean Strategy – Lean Startup. Effectiveness - Efficiency - Competitiveness - Quality - Productivity – Precision - Accuracy - Survival and Organizational Growth - Business - Net Profit. Conjoint Analysis – Fractional Factorial Statistical Models. Quality Function Deployment (Mitsubishi). Risk Management: FMEA/FTA (NASA) - ISO 31,000 - Information Security - ISO 27,000 – Lean Six Sigma. Tokenization - Blockchain - Risk Matrix. Text mining on the Internet to detect weak innovation signals (Iramutec-R and Max QDA), Text Mining - Lemmatization - Content - Semantics - Linguistics – Discourse. SWOT analysis, benchmarking and market research. Design thinking, prototyping and testing. project management, change management and marketing.

Prova 11/12/2023

Prova  11/12/2023 

Por favor enviar para o e-mail de exercícios.

Você terá somente que substituir os sinais de interrogação pelos últimos dígitos de seu RG.



DBO

ICobV

ICArb

Bcont

Dis_Pl

IBD_A

1,604

89

60

11

9

90

0,385

90

61

10

8,9

91

0,216

91

62

9

9,1

92,???

0,303

90

59

10

8,8

89

1,961

20

12

81

0,2

20

0,782

21

14

79

0,3

22

0,57

22

15

78

0,25

23

2,187

22

12

77

0,2

24

0,764

59

35

41

6

60

0,273

60

32

40

6,5

61

1,883

64

33

38

5,8

63

0,581

62

32

37

5,6

62

0,18

79

50

21

8,2

80

0,007

80

49

20

7,8

79

2,028

80

48

18

8,2

81

2,431

79

47

21

7,7

78

1,604

89

60

11

9

90


segunda-feira, 4 de dezembro de 2023

Exercícios

    Exercícios

 

Enviar os exercícios para o e-mail da disciplina.
E-Mail da Disciplina:

biologia.inteligente.10@gmail.com

 


Colocar no Assunto do e-mail o Nome Completo e Número do Exercício


Exercícios:


Exercício 1 – Crie um exemplo de regressão linear simples, análogo ao de Concentrações de As a Diferentes Distancias da Rodovia Anchieta. Rode no Excel ou Libreoffice Calc e no SAS com Regressão Robusta. Se não conseguir criar o exemplo acompanhe as aulas de resolução de exercícios, quando Gabriel resolverá os exercícios como se fosse um aluno, você terá somente que substituir os sinais de interrogação pelos últimos dígitos de seu RG. Prazo: 9/10/2023

Dados para Importar:

Distan.

As

(m)

(mg/kg)

100

0,98???

200

0,95

300

0,85

400

0,86

500

0,59

600

0,45

700

0,32

800

0,15

900

0,11

1000

0,09



Exercício 2 - Crie um exemplo de regressão múltipla, análogo ao de Biodiversidade Animal. Se não conseguir criar o exemplo acompanhe as aulas de resolução de exercícios, quando Gabriel resolverá os exercícios como se fosse um aluno, você terá somente que substituir os sinais de interrogação pelos últimos dígitos de seu RG. Prazo 16/10/2023

DBO

ICobV

ICArb

Bcont

Dis_Pl

IBD_A

1,604

89

60

11

9

90,???

0,385

90

61

10

8,9

91

0,216

91

62

9

9,1

92

0,303

90

59

10

8,8

89

1,961

20

12

81

0,2

20

0,782

21

14

79

0,3

22

0,57

22

15

78

0,25

23

2,187

22

12

77

0,2

24

0,764

59

35

41

6

60

0,273

60

32

40

6,5

61

1,883

64

33

38

5,8

63

0,581

62

32

37

5,6

62

0,18

79

50

21

8,2

80

0,007

80

49

20

7,8

79

2,028

80

48

18

8,2

81

2,431

79

47

21

7,7

78

1,604

89

60

11

9

90




Arquivo para o SAS
data bda;
input DBO ICobV ICArb Bcont Dis_Pl IBD_A;
cards;
1.604 89 60 11 9 90.???
0.385 90 61 10 8.9 91
0.216 91 62 9 9.1 92
0.303 90 59 10 8.8 89
1.961 20 12 81 0.2 20
0.782 21 14 79 0.3 22
0.57 22 15 78 0.25 23
2.187 22 12 77 0.2 24
0.764 59 35 41 6 60
0.273 60 32 40 6.5 61
1.883 64 33 38 5.8 63
0.581 62 32 37 5.6 62
0.18 79 50 21 8.2 80
0.007 80 49 20 7.8 79
2.028 80 48 18 8.2 81
2.431 79 47 21 7.7 78
1.604 89 60 11 9 11
;
/*
input DBO ICobV ICArb Bcont Dis_Pl IBD_A;
*/
proc robustreg;
model IBD_A = DBO ICobV ICArb 
              Bcont Dis_Pl / diagnostics; 
run;

Exercício 3 - Crie um exemplo para rodar cluster analysis. Se não conseguir criar o exemplo acompanhe as aulas de resolução de exercícios, quando Gabriel resolverá os exercícios como se fosse um aluno, você terá somente que substituir os sinais de interrogação pelos últimos dígitos de seu RG Prazo: 
data  People;
input Categ $ BMI Movm kcal;
cards;

AT 20.5 54.4 3100.???

PR 25.3 2.7 2650

SE 25.6 2.9 2700

SEM 23.1 16.6 2950

;
proc cluster outtree = Dendrog method = average;
var BMI Movm kcal;
id Categ;
run;
PROC TREE DATA = Dendrog;

RUN; 


Exercício 4 Crie um exemplo para rodar uma Rede Neural no Weka. Se não conseguir criar o exemplo acompanhe as aulas de resolução de exercícios, quando Gabriel resolverá os exercícios como se fosse um aluno, você terá somente que substituir os sinais de interrogação pelos últimos dígitos de seu RG. Prazo 13/11???

@RELATION Hantav

@ATTRIBUTE MasaCorp REAL

@ATTRIBUTE CompCaud REAL

@ATTRIBUTE OuviExt REAL

@ATTRIBUTE PataPost REAL

@ATTRIBUTE PataAnte REAL

@ATTRIBUTE CorpCabe REAL

@ATTRIBUTE Class {0,1}

@DATA

107.4,91.7,13.11,27,19.4,141.???,0

107.3,90.79,12.97,24.3,19,141.7,0

107.4,90.79,12.97,26.1,19.2,142.2,0

107.4,90.79,12.96,22.5,20.8,142,0

107.5,90.72,12.97,31.2,15.4,141.8,0

107.85,91.56,13.05,27,20.2,141.4,0

107.75,90.65,12.97,23.7,19.2,141.6,0

107.25,90.72,12.92,21.6,21.4,141.7,0

107.45,90.58,12.97,24.6,22,141.9,0

107.6,91.28,13.03,27.6,20,140.7,0

107.65,91.28,13.03,23.7,23.4,141.8,0

107.55,90.65,12.96,23.1,21,142.2,0

107.6,91.56,12.96,23.7,21.6,141.4,0

107.35,90.79,12.97,23.1,21.8,141.7,0

107.55,90.93,12.97,23.1,21.6,141.8,0

107.25,90.86,12.98,27.9,17,141.6,0

107.3,90.93,13.01,24.6,19.6,141.7,0

107.5,90.93,12.97,27,18,141.9,0

107.6,90.72,12.96,22.2,23,141.5,0

107.35,91.14,12.99,25.8,20,141.9,0

107.5,90.93,12.93,25.2,20,141.4,0

107.8,91.35,13,24.3,20.6,141.6,0

107.65,91.42,13,25.2,21.6,141.5,0

107.85,91.14,13,26.1,20,141.6,0

107.55,90.79,12.99,22.2,21.6,141.1,0

107.65,91.28,13.04,24,22,142.3,0

107.75,91.14,13.01,26.7,19.6,142.4,0

107.55,91.21,13.03,29.4,19,141.9,0

107.55,91,13,22.2,21,141.8,0

107.4,90.79,12.93,24.9,18,142,0

107.6,91.07,12.98,23.7,21.4,141.8,0

107.4,90.79,12.97,25.8,18.2,142.3,0

107.5,91,12.96,23.1,21,140.7,0

107.8,91.28,13.01,25.2,20.6,141,0

107.95,91.28,13,26.7,21.2,141.4,0

107.3,91.14,13.02,28.2,19.4,141.8,0

107.75,91.21,13,25.2,19.4,141.8,0

107.65,90.93,12.94,23.7,20,142,0

107.65,91.21,13.01,25.5,18.6,142.1,0

106.95,91.21,12.9,24.3,19.4,141.3,0

107.2,90.86,12.92,26.7,18.8,142.3,0

107.4,91.07,12.96,26.4,19.8,140.9,0

107.45,90.72,12.94,27.9,18,141.7,0

107.45,91.28,12.97,27,19.6,140.9,0

107.4,90.58,12.91,24.6,20.4,141,0

107.15,90.65,12.94,24.9,20.4,141.8,0

107.4,90.93,12.97,24.9,20.4,141.5,0

107.4,90.93,12.97,21.9,21.8,142,0

107.3,90.79,12.98,23.7,20.6,141.1,0

107.25,90.3,12.96,23.4,19.6,142,0

107.3,90.86,12.94,21.6,20,141.3,0

107.65,91.42,13,28.5,19.4,141.1,0

107.25,91.07,13,23.4,21.8,140.9,0

107.7,91.14,13.02,22.8,21.8,141.6,0

107.25,90.58,12.95,23.7,20,141.4,0

107.6,90.79,12.94,27.6,18.8,142,0

107.85,91,12.94,27.6,20.8,141.2,0

107.5,90.72,12.94,26.4,18,141.1,0

107.55,91.07,12.99,23.7,22,141.3,0

107.55,91,12.98,24.6,20.6,141.4,0

107.55,90.72,12.93,24.9,19.8,141.6,0

107.65,90.79,12.94,22.5,21,141.5,0

107.7,90.86,12.94,24,21.2,141.5,0

107.25,91,12.95,24,21.6,141.4,0

107.5,91,12.98,25.8,21.2,141.5,0

107.6,91.42,13,26.4,21.2,140.8,0

107.3,90.65,12.92,23.1,20.6,141.3,0

107.4,90.79,12.93,27.3,19,141.5,0

107.55,90.72,12.98,25.8,19.6,141.8,0

107.45,91.14,13.02,24,22.4,139.6,0

106.9,90.86,12.95,25.2,22.2,140.9,0

107.6,90.93,12.95,24.6,20.6,141.4,0

107.5,90.72,13.02,26.1,20,141.2,0

107.2,90.93,12.96,22.5,21,141.8,0

107.6,90.93,12.97,21.6,21.2,142.1,0

107.05,90.72,12.93,22.8,21.4,141.7,0

107.45,90.93,13.01,26.4,20,141.2,0

107.3,90.86,12.94,22.2,21.2,141,0

107.6,91.35,12.98,23.7,21.8,140.9,0

107.3,90.93,12.94,23.7,20,141.8,0

107.55,90.79,12.97,25.8,20.6,140.6,0

107.45,90.86,12.96,22.5,20.6,141,0

107.6,90.79,12.91,27,19.4,141.9,0

107.6,91.07,12.99,23.7,21.6,141.3,0

107.7,91.49,13.02,27,22.2,141.2,0

107.55,90.93,12.96,26.7,20.4,141.5,0

107.6,90.93,12.97,26.1,19,141.6,0

107.5,90.72,12.92,25.2,20.4,142.1,0

107.45,91.21,12.99,22.2,22.4,141.5,0

107.5,90.93,12.97,24,21,142,0

107.35,90.79,12.93,25.8,19.2,141.6,0

107.7,91,12.99,25.5,19.4,141.4,0

107.45,90.58,12.95,24.6,19.8,141.5,0

107.25,90.65,12.93,22.2,21.4,141.5,0

107.35,90.72,12.95,24.9,20,142,0

107.8,90.93,12.99,27,19,141.7,0

107.5,91.28,13.03,27.3,20.4,141.1,0

107.2,90.79,12.95,24,20.6,141.2,0

107.55,91,12.98,27.3,20.4,141.5,0

107.35,91,12.94,23.4,20,141.2,0

107.2,91.07,13.03,29.1,23.4,139.8,1

107.45,91.35,13.02,33,23,139.5,1

107.45,91.21,13.01,26.1,23.4,140.2,1

107.5,91.28,13.06,29.7,21.8,140.3,1

107.35,91.14,13.03,35.4,21.8,139.7,1

107.5,91.14,13.02,31.8,21.4,139.9,1

107.65,91.21,13.01,27.9,24.2,140.2,1

107.4,91.07,13.04,29.4,23,139.9,1

107.5,91.14,12.99,30,23.8,139.4,1

107.6,91.42,13.08,31.2,22.4,140.3,1

107.6,91.28,13.03,24,23,139.2,1

107.55,91.35,13.03,31.8,23,140.1,1

107.7,91.49,13.11,29.1,23.6,140.6,1

107.45,91.28,12.99,34.2,22,139.9,1

107.55,91.21,13,31.8,21.6,139.7,1

107.75,91.28,13,24.6,22.4,139.2,1

107.35,91.42,13.01,35.4,21,139.8,1

107.35,91.28,13.01,36.3,20.8,139.9,1

107.4,91.35,13.02,33,22,140,1

107.2,91.14,12.99,30.3,24,139.2,1

107.4,91.21,13.04,30.3,24.2,139.6,1

107.55,91.42,13.03,36.9,20.4,139.6,1

107.65,91.56,13.11,34.8,21.2,140.2,1

107.55,91.49,13.04,31.5,22.4,139.7,1

107.35,91.35,13.05,29.7,20.6,140.1,1

107.45,91,13.03,30.6,22.8,139.6,1

107.5,91.28,13.04,28.2,23.2,140.2,1

107.75,91.49,13.03,30.6,23.6,140,1

107.55,91.14,13.02,30.3,22.6,140.3,1

107.25,91.14,13.06,29.4,24.2,139.9,1

107.15,91.14,13,32.1,21,139.8,1

107.25,91.14,12.98,36.9,22.4,139.2,1

107.45,91.35,13.02,31.8,23,139.9,1

107.3,91.14,13.04,31.5,23.6,139.7,1

107.1,91,13.02,33,22.4,139.5,1

107.4,91.07,13.01,35.7,22.2,139.5,1

107.3,90.86,13.02,32.1,22.2,139.4,1

107.45,91.49,13.03,27.9,22.4,138.3,1

107.3,91.28,13.04,33.9,21.6,139.8,1

107.25,91.35,13.02,35.4,20.4,139.6,1

107.4,91.14,13.03,30,23.8,139.3,1

107.35,91,12.94,30.6,22,139.2,1

107.3,91.14,13.04,33.6,21.4,139.9,1

107.5,91.35,13.04,31.8,22.2,139.9,1

107.25,90.86,12.98,34.2,20,139.3,1

107.45,91.42,13.04,35.7,21,139.8,1

107.5,91.35,13.04,34.2,21.4,139.9,1

107.65,91.42,13.03,27.9,22.6,138.1,1

107.35,91.14,13.01,32.1,22,139.4,1

107.45,90.93,13,29.7,24.6,139.4,1

107.45,91.21,12.99,35.7,21.2,139.8,1

107.3,90.93,12.97,35.7,20.2,139,1

107.3,90.79,12.93,31.2,22,139.3,1

107.25,91.07,13.01,36.3,20.6,139.4,1

107.25,91.21,13,33,23,139.5,1

107.55,91,13.03,34.8,21,139.7,1

107.1,90.79,12.96,30.9,22.8,139.5,1

107.2,91.07,13,33.9,21.4,139.2,1

107.4,91.28,13.06,37.5,20,139.3,1

107.3,91.42,13.01,24.3,24.2,137.9,1

107.8,91.07,12.97,22.2,24.4,138.4,1

107.45,91.35,13.01,29.7,20.4,138.1,1

107.3,91.07,13,34.5,21.2,139.5,1

107.35,91.07,13.02,34.8,21.8,139.1,1

107.15,91.21,13,34.2,21,139.8,1

107.55,91.21,13.06,30.9,24,139.7,1

108.15,91.49,13.04,30,20.2,138.8,1

107.8,91.28,13.01,28.8,22.4,138.6,1

107.4,90.93,12.98,28.8,24,139.6,1

107.45,91,12.99,34.2,21.8,139.7,1

106.95,91.49,13.05,26.1,23,137.8,1

107.1,91.42,13.04,36,20.4,139.6,1

107.4,91.35,13.03,35.4,21,139.4,1

107.4,90.72,13,31.2,23.2,139.2,1

107.4,91.07,13,34.2,21,139.6,1

107.45,91.28,13.02,35.7,21.4,139,1

107.15,91.07,13.01,34.8,21,139.7,1

107.25,91.28,13,29.7,24,139.6,1

107.4,91.35,13.03,30.6,24.2,139.1,1

107.25,91.14,13.04,24.6,23.6,137.8,1

107.5,91.28,13.01,34.2,21.4,139.1,1

107.4,91.42,13.06,24,22.8,138.7,1

107.5,91.35,13.01,33,22.8,139.3,1

107.3,91.35,13.04,30.3,22.8,139.3,1

107.35,91.14,13.01,32.1,22.2,139.5,1

107.35,91.28,13,34.5,21.4,139.4,1

107.25,91.28,13,24,24.4,138.5,1

107.4,91,12.97,34.2,21.2,139.2,1

107.4,90.93,13.02,28.8,23.8,139.4,1

107.3,91.21,13.02,38.1,18.2,139.2,1

107.55,91.14,12.98,30.6,24,139.4,1

107.7,91.35,13.06,26.4,22,138.6,1

107.35,91.21,13.02,32.4,22.2,139.2,1

107.5,91.35,13.03,28.8,22,138.5,1

107.45,91.21,13.05,34.8,21.2,139.8,1

107.5,91.28,13.03,29.7,24.2,139.6,1

107.55,91.21,12.99,30.9,23,139.7,1

107.4,91.21,13.04,31.8,22.2,140,1

107.35,91.49,13.08,33.6,22.4,139.4,1

107.15,90.93,12.99,30.6,23,139.6,1



Exercício 5 - Elaborar um seminário,

 - Tarefa Seminário:

      - Utilidade Inteligência Artificial (IA) para o Biólogo

      - Utilidade Ciência de Dados (CD) para o Biólogo

      - Utilidade Simulação Computacional para o Biólogo (Bootstrapping, Jackknife, Monte Carlo etc.)

      - Utilidade Mineração de Texto – IA - CD (Analises Linguísticas) para o Biólogo

      - Utilidade Metaverso para o Biólogo

      - Elaborar de 5 a 7 slides, individual.

      - Parâmetros: 5 a 7 linhas, fonte 28, mínimo, uma palavra da origem a 10 ou 20 na oratória. Colocar símbolos visuais (lado direito do cérebro), também cores, gráficos e diagramas, não tabelas, números (lado esquerdo)

      - Gavar um vídeo ou texto em Word, Libre Office Writer similar a apresentação para China.

- PRAZO 6/11/2023


Exercício 6 - Optativo - Aplicar ANOVA E MANOVA no Exercício 3 

data People;

/* BMI: body mass index --> Índice de M. Corporal = Peso / (Altura * Altura)
     Movm: Movement (Km por semana)
     KCal : Kilocalories (ingeridas por dia)
     ATL: Athletes
     SEMI: Semi-athletes
     SEDE: Sedentary
     PROF: Professor

*/
input Categ $ BMI Movm Kcal;
cards;
ATL 20.2 60.7 3200
ATL 21.3 54.8 3100
ATL 19.3 49.6 2800
ATL 21.1 52.3 3300
SEMI 22.4 14.9 2600
SEMI 21.9 17.8 2700
SEMI 23.8 18.6 3200
SEMI 24.1 15.1 3300
SEDE  27.3 2.5 2700
SEDE 23.4 4.3 2300
SEDE  25.2 2.3 2600
SEDE  26.4 2.6 3200
PROF 26.2 4.1 2600
PROF 24.2 2.1 2700
PROF 25.4 1.9 2650
;
Proc ANOVA;
     Class Categ;
      Model BMI Movm Kcal = Categ;
     Means Categ / Duncan Lines;
Run;


Exercicio 7 Optativo. Anal. os dados do exercicio 2 com IA no progrma Weka